
 

 

SWEN-261 
Introduction to Software 
Engineering 

Department of Software Engineering 
Rochester Institute of Technology 

State-based Behavior I 



A large part of software behavior is dependent on 
the state of the system, i.e. state-based. 

 A finite-state machine is a notational mechanism 

for capturing this state-based behavior. 
• The UML diagram is called a statechart. 

 Explicitly defining this state-based behavior 

provides a common specification for the team. 

 Allowing the state behavior to evolve implicitly 

creates a situation where every team member 

may not have the same model of the behavior. 

2 



A statechart can define behavior in multiple areas 
in your application. 

 Defining the operation of an interface, such as, the 

web application interface. 
• For an after class exercise, you will create a 

statechart that describes the sample webapp's web 

application interface. 

 Specifying the behavior for a single object. 
• Later in the course, we will come back to statecharts 

and discuss how to implement the state-based 

behavior explicitly. 

3 



A statechart identifies the recognizable conditions 
that a system can be in over intervals of time. 

4 

 The system can exist in only one state at a time. 
• You typically want a deterministic state machine to 

define behavior of your software systems. 

 The system exists in a state for a period of time. 

 A solid ball specifies the starting point. 



Transitions provide the mechanism for the system 
to move from one state to another. 

 The event triggers the transition to be taken. 
• The event could be calling a method, receipt of a 

signal, end of a time period, or end of an activity. 

 The guard is a Boolean condition that must be 

true for the transition to be triggered. 

 When the transition is triggered, the action list is 

executed. 

5 



Transitions provide the mechanism for the system 
to move from one state to another. 

 A transition executes instantaneously relative to 

the time spent in a state. 

 A transition can return the system to the same 

state that it was in when the transition was taken. 
• Any actions would be executed before returning to 

the state just left. 

 There can be any number of transitions entering 

or leaving a state. 

6 



Here is a statechart for control of an airlock. 

7 



Follow these guidelines when creating your 
statecharts. 

 Pick meaningful state, event, and guard names. 

 Always specify a starting point without a guard on 

the transition to the initial state. 

 Guards on multiple transitions from a state with 

the same trigger event should be mutually 

exclusive. 

 Evaluating the guard should have no side effects, 

and the guard cannot use side effects of actions 

on a transition it is guarding. 

8 



Use a statechart to get a shared understanding of 
the state-based behavior of a system. 

 Even if you do not explicitly implement the states, 

you can more clearly capture the system behavior. 

 There are frameworks that provide an 

implementation of state-based behavior, such as 

StatefulJ FSM (https://github.com/statefulj) or 

squirrel-foundation 

(https://github.com/hekailiang/squirrel) 

 The full statechart notation has even richer 

semantics defined (entry/exit actions, composite 

states, orthogonal/concurrent states). 

9 

https://github.com/statefulj
https://github.com/statefulj
https://github.com/hekailiang/squirrel

